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ABSTRACT
\

A system of approximate surface wave equations employed in an earlier
treatment of the reflection of straight-crested surface waves by arrays of
reflecting strips is extended to the case of variable-crested surface waves,
Although the basic straight-crested surface wave velocities are determined
as in the previous treatment, in the present case a reduction in straight-
crested surface wave velocity in the unplated region due to the adjacent
plated regions, which is essential for the existence of the guided transverse
modes, is determined by means of a perturbation procedure. The attendant
depth dependence for each region is employed in the variational principle as
in the earlier treatment, but now the variable cresting relation for the
isotropic substrate is incorporated in the description. The resulting equa-
tions are applied in the determination of both the transverse modes in each
region and the transmission line representation of each mode., The transverse
wavenumbers in a given mode are taken to be the same in the plated and un-
plated regions in order that the interior edge conditions be satisfied
pointwise, The system of parallel transmission lines is applied in the
analysis of the reflection of variable-crested surface waves by uniformly
spaced arrays. The response to a rectangular input of a particular reflect-

ing array consisting of aluminum reflecting strips on ST-cut quartz is

calculated and compared with measurements,
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1. Introduction

The reflection of surface waves in high Q acoustic surface wave reson-
ators is achieved by employing periodic arrays of reflecting strips (or
grooves) which reflect almost all of the energy in an incident surface wave
as a surface wave, 1i.,e.,, without much scattering into bulk waves, when the
wavelength matches the spacing. Considerable work has been donel-v in the
description of such device structures, In all of those treaunent.l—6 model
parameters are measured which are never related to the fundamental material
constants., In an earlier work7, a system of approximate one-dimensional sur-~
face wave equations and edge conditions in a4 single scalar variable was de-
rived from the variational principle of linear piezoelectricity and applied
in the analysis of the reflection of surface waves by arrays of reflecting
strips. These approximate equations are expressed in terms of the known
fundamental material constants and no measurement of model parameters is re-
quired. However, it should be noted that scattering into bulk waves has been
ignored in all of the above~-mentioned ttoatmentsl-v. This scattering has
been includedg-lo in more fundamental studies of the reflection of surface
waves from small surface impedance discontinuities, but this work cannot
readily be extended to the treatment of the large number of discontinuities
encountered in a reflective array as noted in Ref,7 along with the fact that
certain results that could in principle be obtained from that vorka-lo could
be of considerable value in extending the treatment presented here to include
gcattering loss,

In a previous paper it was pointed outll that surface waves encounter-
ing reflective arrays of strips are not straight-crested but are variable-
crested on account of the finite width of the strips, which causes transverse

modes to propagate in the array. However, all of the aforementioned
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treat-antsl-7 are for straight-crested surface waves only. Recently, some
analytical \v/oxrku-14 has been done on transverse modes in acoustic surface
wave reflecting arrays, all of which uses coupled mode scalar wave equations
with model parameters that are measured and never related to the fundamental
material constants,

In this paper the system of approximate surface wave equations employed
in the earlier treatmcnt7 of the reflection of straight-crested surface waves
by arrays of reflecting strips 1s extended to the case of variable-crested
surface waves, As in the straight-crested case these equations are expressed
in terms of the fundamental material constants and no measurement of model
parameters 1s required., Although the basic straight-crested surface wave
velocities are determined as in the previous troatmentv, in the present case
a reduction in straight-crested surface wave velocity in the unplated region
due to the adjacent plated regions, which is essential for the existence of
the guided transverse modes, is determined by means of a perturbation pro-
cedure. At the same time an increase in the straight-crested surface wave
velocity in the plated region due to the adjacent unplated region is found.
The attendant depth dependence for each region is employed in the varijiational

principle as in the earlier treatment, but now th® variable cresting rela-

tion for an isotropic substrate s is incorporated in the description,
This i1sotropic approximation for the variable cresting is employed because
variable-crested surface wave solutions of the three-dimensional equations
for anisotropic materials have not been determined, This approximation is
deemed not to have an appreciable effect on a calculation primarily because
the essential anisotropy is still retained in the equations., The resulting
equations are appliad in the determination of both the transverse modes in

each region and the transmission line representation of each mode. The




transverse wave numbers in a given mode are taken to be the same in the plated
and unplated regions in order that the interior edge conditions be satisfied
pointwise., The system of parallel transmission lines is applied in the
analysis of the reflection of variable-crested surface waves by uniformly
spaced arrays. The response to a rectangular input of a particular reflecting
array consisting of aluminum reflecting strips on ST-cut quartz is calculated.
The calculations clearly reveal the existence of resonance peaks on the high
frequency side of the fundamental resonance, as observed by Staples and
Suythel7. The calculated spacing of the peaks is in reasonably good agree-
ment with the measured values, We believe the agreement would be improved

if a more accurate dispersion curve for the aluminum film on the guartz sub-
strate were employed because the wavelengths used in the experiments were a

little too short for the thin film approxmation1 . employed in the calcu-
lations, In addition, for a given reflection coefficient we find that the
number of reflecting strips for the fundamental variable-crested mode is
larger than we found earlier in the straight-crested case, This is essenti-
ally a result of the newly defined velocities in each region, which are
required for the energy to be confined. Furthermore, on account of certain
observations recently madelg, we show that although the amplitude of the

fundamental transverse mode has an inflection point at the edge of the strip,

the power has an inflection point well inside the edge of the strip.

2, Straight-Crested Surface Waves

Solutions satisfying the differential equations and boundary conditions

of linear pieroelectricity for straight-crested acoustic surface waves may be

written in the form
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termined numerically, These calculations have been performed for thin alumi-
20

num films on ST-cut quartz , and the dispersion curves obtained are plotted
in Fig.l. However, the resulting phase velocities are either for the com-
pletely free or completely plated substrate, and in the case of the reflecting
array the substrate is only partially plated, as shown in Fig,2, Consequently,
we must find the phase velocities in the unplated regions when the adjacent
regions are plated and in the plated regions when the adjacent regions are
unplated in order to obtain the approximate surface wave equations and edge
conditions,

wWhen the plating is nonconducting the mean phase velocity over a wave-
length for a partially plated substrate may readily be determined by means
of a perturbation procedure, We determine the mean velocity only at resonance,
i.e,, when the half wavelength equals the periodicity, because the result
thus found will hold for all longer wavelengths and the nearby shorter ones
of interest, It has been shown20 that the reduction in mean surface wave
velocity svm is given by

m 2
AV = Py O - -
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where v1 is the free unperturbed surface wave velocity and
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where sz is given in Eq, (4.1) of Ref.20, p', A' and u' are the mass density
and Lame constants for the film material and the q; are the normalized me-

chanical displacement components for the surface wave eigensolution for the

free substrate, which are defined by

g; - uj/Nl' (2.4)
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and ' denotes complex conjugate. The foregoing equations clearly show that
the reduction in mean surface wave velocity Avm is directly proportional to 2f,
the portion of the surface plated in a wavelength. As shown in Ref,20 if
Eq. (2.2) is used iteratively, the resulting dispersion for the fully plated
case can be obtained to any desired accuracy. Clearly, the same is true for
the mean velocity in the partially plated case,

when the plating is conductive the foregoing determination of the mean
velocity does not hold because the electrical boundary condition in the plated
and unplated regions is different and this particular difference cannot con-
veniently be treated by means of a perturbation procedure because it requires
a perturbation from one set of eigenconditions to anotherzo. Under these

circumstances the boundary conditions in the plated region are
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where 5jb is the Kronecker delta with the provision that b cannot take the

value 2 and

E 5
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while the boundary conditions in the unplated region are ?
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The dispersion curve obtained from the solution satisfying (2.6) is plotted
as the curve labeledZL)in Fig.l, while from the solution satisfying (2.8) we
obtain the straight line labeled\})in Fig.1l. The mean phase velocity21 Qm
is now defined so that the time of travel over (f+d) is equal to the time

of travel of Vo over L plus vo over d and we write

(L+4d)

~m
(o] A4

£, *VE_. ) (2.10)
v

o
which determines Qﬂ when the other quantities are known, Clearly, this
definition can be used even when the plating is nonconductive, and consequently
(2.10) can replace (2.2). 1It is easily verified that the two definitions are
equivalent when vo and ;o differ by a small amount, which is the case of in-
terest here, For [=d, Qﬁ is plotted in Fig.1l.

From the mean surface wave velocity Y in a wavclenqchI_ which we have
determined, we must obtain the surface wave velocities V and V, which are the
phase velocity in the unplated regions when the adjacent regions are plated
and the phase velocity in the plated region when the adjacent regions are
unplated, respectively. One way of doing this is to equate the time average
over a cycle of the kinetic energy of the solution with the mean velocity,

: which has been determined, with the time average over a cycle of the sum of




the kinetic energies in the unplated and plated regions, which have the un-

known phase velocities V and V. To this end we write
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where aj' Gj and qj are the normalized eigensolutions for the mean velocity Vm
in a wavelength, the velocity V in the plated region and the velocity V in the

unplated region, respectively. The eigensolutions Gj, qj and §J are normal-

ized in such a way that
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For the same propagation wavenumber £, from (2.11), we obtain

- ] o«
A 2 - -~n “}h 2~ ~e —2 -h._ -
::t-od)(vm) | g.g,dx_+ p'L2h*' (V ) q.(0)g,(0)=plV | G, dx
| 94949%, vy Wy J 9595 9%,
o o
o
+ ;'Lzh'?za (0)3" (0) + ;dv2 J.q.q'f dx. . (2.13)
j 3 n f BREES"

~m x

Since V is known, a corrected qj is found by satisfying the differential
equations and traction-free boundary conditions with the known e (the electric
boundary condition is ignored), after which the left-hand side of (2.13) is

known., From (2,13) we may write the two independent recursive equations
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in which qj and 'c}j are the normalized eigensolutions corresponding to the phase
velocities vnand '\-‘n at any stage of the iteration. Equations (2.14) and (2.15)
are solved by successive alternate iteration, In this process one starts with
the free surface wave solution for q) and the fully plated surface wave solu-

tion for qj and the known respective velocities Vo and \—Io. Then Eq, (2.14) is

solved for vl using Go for Vl-l' after which VI is obtained from (2.15) using

3

differential equations in the manner set forth above using the present iterated

the \'1 just determined., Now the corrected g, and Ej are determined from the

velocities \,'1 and ;1' This process is continued until both V and v converge,
Both V and V converge to better than 10 digit accuracy in about 15 iterations,
For the case (=d, the corrected phase velocities V and vV are plotted in Fig.3

as the curves labeled 1 and 2, respectively,

3. Approximate Surface Wave Equations

In this section we derive the approximate two-dimensional surface wave
equations and edge conditions in one scalar variable from the variational
principle of linear piezoelectricity. It has been shovnlb that the varia-
tional principle of linear piezoelectricity for a partially plated substrate,

shown in Fig.4, may be written in the form

x
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where we have introduced the convention that a bar over a quantity indicates

that the quantity is associated with the plated region, the primes refer to

the plating material, the prescribed quantities in Eq. (3.1) are over the por-

tions of the cylindrical boundary associated with the plated and unplated

regions, respectively and

A= A /A s 2t 3.2)

1s the plate Lameé constant. In Eq.(3.1) we have employed Cartesian tensor
notation, the summation convention for repeated tensor indices, the dot nota-
tion for differentiation with respect to time, and the convention that a comma
followed by an index, say j, denotes differentiation with respect to the space
coordinate xj. In addition, we have introduced the further conventions, em-
ployed in Ref.16, that repeated Greek indices are not to be summed and a and b
can equal 7 and ¢ but skip v, which refers to the direction normal to the
surface. The quantities le, uj, Di’ and ‘k are the components of stress,
mechanical displacement, electric displacement and surface traction, respect-
ively; o, @, 0, and ca are the mass density, electric potential, surface

charge density, and free-space electric potential, respectively; and ‘o is

the dielectric constant in the space outside the substrate, In addition to

BEq. (3.1) we have the linear piezoelectric constitutive equations, which can

be written in the form
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where Cijkl' ek‘), and ‘fk are the elastic, piezoelectric, and dielectric
constants, respectively,

As in Ref, 16 the basic assumption employed in obtaining the approximate
two-dimensional surface-wave equations in one scalar variable from (3.1) is
that the xv-depond «ce of the variables is to be obtained from the three-
dimensional surface-wave solution functions in Eq. (2.21) of Ref, 16, In addi-
tion, certain shaping modifications are introduced, which are obtained from
the variable-crested surface-wave solutions for isotropic substrates determined
prevxﬁu-lyli from the three-dimensional elasticity equations. Accordingly,

we write

u, = (x )¥(x ,x ,t), s=a, (x )¥(x ,x_,t), (3.4)
) b ) v T o 4 Y T c

where ¢ is the scalar surface wave variable, and

- (n)_(n)
o c - L
:) 5 ¢ A exp(x‘{n‘;x\),

4 (3.5)
':4 - z (‘(n)kin)oxpne(n){xv) 4
for straight-crested surface waves, As in Ref, 16 for variable-crested surface
waves the a’ and 5‘ are changed in accordance with the variable-crested solu-
tion for the isotropic substrate, and in those portions of the straight-crested
solution that are employed in the approximate (or exact) variable-crested
solution, f in the straight-crested solution is to be replaced by (, where

clad o, (3.6)
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and »x is the purely real part of the shaping wave number for trigonometric
cresting or the purely imaginary part of the decay factor for exponential
cresting, It has been uhovnls that this procedure converts the straight-
crested surface-wave solutions to the variable-crested surface-wave solutions
exactly in the isotropic case, Since variable-crested surface-wave solutions
have not been obtained for anisotropic substrates, this result for the iso-
tropic case is employed in the anisotropic case as an approximation, Essenti-
ally, this approximation assumes that  even in the anisotropic case, variable
cresting is in accordance with known results for the isotropic case, More-
over, since in the anisotropic case at hand the u_ (or Love type) displacement
component exists in the x_ propagating straight-crested surface wave in addi-
tion to the u_ and uv (or Rayleigh type) displacement components, we must
account for the variable cresting due to the Love type displacement in the
straight-crested solution as well as the above-mentioned variable cresting
resulting from the Rayleigh type displacements in the straight-crested solu-
tion, We naturally assume that the variable cresting resulting from the
straight-crested Love type displacement component is in accordance with the
known result for the isotropic case, as we already have for the Rayleigh

type displacement components, It has been shounl6 that in this case to a

good approximation the variable-crested solution can be written in the form

. i 1 1xxc i'(xY-Vt)
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where the ;j and &‘ are given in (3,5) with F appropriately replaced by the
resultant wavenumber ( in accordance with the earlier discussion, Clearly,

1f we define aj and a, by

p iR 4 A
= L — -
°f(‘v) °1('v‘ . o(xv), av(xv) ¥ av(x )
( & (x ) - =& (x) ) = &, (x ) 1.8)
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we may write (3.4) in the form
‘H -aj(xv)t(x_.xo.t). c:-od(xv)t(xT.xc,t) 5 (3.9)

which is for an unplated region, and for a plated region the &j‘ 5‘ in (3.95)
are appropriately modified and, accordingly, all quantities in (3.5) - (3.8)
are written with bars on top and in place of (3.9) we have
U, =3
3 x

(xv)‘(x',xﬂ.t), c'-a4(xv);(x,,xq.t) 3 (3.10)

)

As in Ref.?7 and in accordance with the explanation given there,K we take

the variations in the form
. - v
Su, = o 8¢ , p = a,b 2
§ " L 4 ]

. 5&-5;57’ . (3.11)

where the asterisk denotes complex conjugate and the variations in Egs, (3.11)
are consistent with the constraints, Moreover, it is to be noted that this
choice of depth behavior for the variations results in surface wave equations
in ¢ and ;, each of which yields an expression for the time-~average power flux

identical with the one given by the three-dimensional equations, which is

. -
3 + @ Dj)dxv . (3.12)
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Now, substituting from Egs. (3.9) - (3,11) into Eq, (3.1), performing the
integrations with respect to depth, and employing the planar divergence

theorem, we obtain
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where ", and ﬂ’a denote the components of the outwardly directed unit normals
to the curves bounding the plated and unplated portions of the substrate,
respectively, ‘d denotes the line separating the plated from the unplated
region, n_ denotes the components of the unit normal to l.d directed from the

plated to the unplated region, it has been assumed that t-; along l.d and
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for the unplated region and equivalent barred expressions exist for the plated
region, Substituting from Egs, (3.3), (3,8) and (3.9) into Egs, (3.14) and integrating

with respect to depth, we obtain

s
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s
Ou ™ ®urbf;a®, v b * S et vk, v T Swat e, v b T et e, VY
s
O ™k b ¥ ket ik, v T taBetaY b SRt a0 (3.15)
where
x x
r . J‘ .
Hw' J [+ ] a‘( dxv , He a\{ax dxv .
o
[ J o
H . - f a' dx , H e = [ aa ax .
MY,V d MY,V oV Y,V J Ky, V v
o
@ @
«lo o & . n -, dx (3.16)
w vy, v d VY, Y et oy vy &, Vi v ? ;
o
x, Yy »1,234, (3.17)

Equations (3.!5), with Egs, (3,16), are the surface wave congtitutive equations
for the approximate two-dimensional surface wave equations for an unplated
region, and equivalent barred constitutive equations exis( for a plated region,
Since 5¢* and 5;' are arbitrary in the interior of the unplated and plated
regions, respectively we have the approximate one-dimensional surface wave

differential equations

S -~
° +0° -1°-0%-4"(0)D (0)=oH
v v 4 v

S ot , (3.18)
. .

33

=S = gt — = . = - -
. aa-Ty"D ¢ ”05.‘°’°’b‘°",.b’“ (a.(on'b.+ab(on,“)d;’(on

= [oH 2h' o', (0)a" (0)) ¥ 3.19
[on”.* hoaj()aj(H‘, ( )
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in the respective regions, and where we have made use of the fact that
5: (0) = 0. Since 5¢" and 5¢" are arbitrary on the cylindrical edges of the

unplated and plated regions, respectively, we have the edge conditions

n (To+D°)ap®. 5 (3.20)
a a a

.

=5 & I ‘5 (0 . g L 3 e Y = -—S-Fs
n.[(‘r.¢D.)¢‘h (\oab( )aa(O)t'b*u (aa(O)t’bOQb(O)t'a)ab(O))l =3 .
{3.21)
Since 5¢" is arbitrary along L., we have the continuity condition
S S -5 =8 < - vl -
na(Ta +Da) na(Ta-ODa +2h'(\;ab(0)aa(0)"b

+ (aa(OH b*ab(OH'a)ab(O))] ’ (3.22)

at an edge separating a plated from an unplated region,

4. Transverse Modes in Reflective Arrays

In this section we apply the approximate two-dimensional surface wave
equations derived in Sec.3 in the determination of the transverse modes
propagating in the strips, We consider surface waves propagating in the
digonal (xl)-duectxon through a reflecting array on ST-cut quartz as shown
in Pig.2 with 2w the width of each strip, A cross-section through a typical
strip of the array is shown in Fig.S.

The differential equations are (3,18) for the unplated region with the

aj, a‘ known from Sec.2 for the free surface wave velocity Vo (horizontal

line) in Pig.3 and (3.19) for the plated region with the aj, 6‘ known from

Sec.2 for the velocity V labeled 2 in Fig.3, and with Ve 2 in both regions,

Since we are considering the special case of variable-crested surface waves
propagating in the digonal direction on ST-cut quartz, a number of material
constants in the surface wave constitutive equations in (3.15) vanish,
Although we present the formal solution in the general case, the H....

defined in (3.16) simplify somewhat and may be written in the reduced form
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where
4 4 (n) (n)- (n), (m)«
X ) e
wy" 1 i
n=1 m=l n B-
4 (n) (m)y, (n) (m)w
- 2: i. ol A A B
2 v
"y £1Y n=1 m=1 Bn - B;
4‘ 4 c (Ill)-A )A(m)cs
= 2‘ 2: noY ™
Wy ,2 o ’
’ n=1 m=l ﬁn"ﬁm
4 4 (n)c(m)-l" Aém)'ﬁnﬁ;
K 2,%,2 " ig Z )_ o . 4.2)
n=]1 m=]l Sn m

For the determination of the transverse modes propagating in the strips, the

boundary conditions at the edge of the strips in the transverse direction

are the continuity of ¢, i.e.,

V=9, at x, =iw, (4.3)

and (3.22), which for the case at hand may be written in the form

Cgs (M3y*? ’"11",3’ + g (H) o,y +Hyped 1) + 8550, ;1Y

ct

®35f41 ‘14 12" Czc"z,z,z"‘cu"zz",a

(szo"a*ﬂ ..) +e

3,2;2 14%2*? 1 * %13 sttt 4
°23"2,2,3"’°33"33",3 $Cy (Hyget 3 +Hy g g0¥) vegH Y,
€yg (Hyge¥  *Hyget ) tegq(H) o et HHppet )

€238, 2,4% = S33"a*Y,3
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= Cgq (HJI.‘,I *Hll.v'B) + Cog (Hl'z,lq‘ “‘Hzlc*’l) *825H4’2,1§'
e3shigy eV 3 tegfed +CoqMy 2,20 *C3qll0 Y
+ CaqHype¥ 41y 5 ge®) PP P Hyge ' *S23f3 2,3%Y

T T i e o A
+ Cyaflyys¥ 3 40 (Hyge¥ 4 Hy o aet) deglgget (tey Myt )

FH oV ) beg (H) o oV H Y ) 63l 2,40V " SaafigerY 5
' ' et = F 4
+ 2h ()\ (a T +a37'3) +ut (ay t +2a3a37 .
+35‘? w0 At X =W, (4.4)

3

The surface wave solution functions may be written in the form

Doy 4 (Ex -ty x4 (Ex) -at)
¥ = Pe e , ¥ = Pe e L (4.5)

which satisfy (3.18) and (3.19), respectively, with (3.15) and the symmetry

of ST-quartz, i.e., (4.,1), provided

~ 4 A3 a2 -
Ax + Brn + Cx + DX + E=O0O

=<4

- - -
+ BL +Cx +Dr ¢+ E=O
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Rewg, wo= R,
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where the h .... in (4.9) are obtained from the expressions for the K.... 1

in (4.2) by omitting the quantities outside the summation sign, V is known

as a function of E from the curve labeled 2 in Fig.3 and

s - e -
g =g Mz, Y=20n'. (4.10)

~

The foregoing quantities in (4.9) and (4.10) are for the quartic for x in
(4.7), which holds for the plated region. The expressions for A, B, C, D
and E in the quartic for % in (4.6), which holds for the unplated region,

may be obtained from the expressions for A, B, C, D and E, respectively,

simply by setting h' =0, removing the bars in all remaining terms, adding

the term
ie s (4.11)
’\-0

“

-
a
o 404‘
x

to the expression for E and, of course, using the straight-crested solution
for the unplated case from Sec.2, which corresponds to vo given by the
horizontal line in Fig.3,

Equations (4.6) and (4.7) are quasi-qguartic equations in % and i,
respectively. They are not absolute quartics because of the dependence of
the coefficients on » or i. However, since in reflecting arrays the width
of a strip is much larger than a propagation wavelength (or the spacing of
the strips), we must have

I <1, |%| <«< 1, (4.12)
even for a relatively high order transverse mode. Hence, even though (4.6)
and (4.7) are actually sixth-order equations in the problem, on account of
(4.12) they may be treated as quartics here. Accordingly, for a given E,
the complex quartic equation in (4.7) yields four complex roots for i, two

of which turn out to have a real part in the range of interest and an

imaginary part at least an order of magnitude smaller than the real part.
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In addition, the real parts are almost equal and opposite in sign. The other
two roots have both real and imaginary parts outside the range of interest,
We naturally ignore the latter two roots completely and neglect the small
imaginary parts of each of the former, Similar statements hold in the case
of Bg. (4.6) in %, with the difference that in the two roots of interest the
real parts are at least an order of magnitude smaller than the imaginary
parts, which are almost equal and opposite in sign. In this case we neglect

the small real parts of the roots of interest, Moreover, since the solution

external to the strip must decay with distance from the edge, only the one
decaying solution in each external region is employed. We deem the fore-
going approximations to have essentially no influence on the accuracy of a
calculation,

Since the frequency w and the propagation wavenumber £ are the same in

the plated and unplated regions for any one transverse mode, from the assumed

isotropic variable-cresting relations (3,6) and (4.10), we have
- FyY 3
-‘t ' (4.13)

where \r't is the phase velocity of the particular transverse mode in question
and vo and V are found as functions of { and E from the horizontal line and

curve labeled 2, respectively, in Fig,3, The associated x and ¥ are found

from the izotropic variable~cresting relations in (3.6) and (4.10), respect-~

-

ively, for a given ¢, ( and (.

We now take the solution of the boundary value problem in the form

in (x 4w) {(Ex -wt)
| V. =Pe 2 s 1

L 1 d
iR x iR x i(Ex,-wt)
'.(ple i 3+p2e - 3)9 ' ’ |
ixz(x3-v) i(§x1-wt) l
'R- Pze e . (4.14)




where % %o %, and %, are the significant roots of (4.6) and (4.7) in accord-

1

ance with the foregoing discussion.

(4.4), we obtain

Substituting from (4,14) into (4,3) and

D C(M)‘I —pl

C(21) C(22)

where
-iYGx
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S 1 gl _ )
1 1
- n_(.»':_B
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1 1
- iy (€s
e
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1\(?5
iVGR
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C = e ((n1 - Bl
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S s BT g ? 3, 2,;3"
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B | (A% + 2 )aja] tutaia) —'2 \( o 2 )clol + a3a3>]x - . (4.17)
» 2

for the plated region, and the corresponding quantities Fl' n2 and 83 for the

unplated region are obtained from El‘ 32 and 33 in (4.17) simply by replacing
the barred by unbarred quantities and, accordingly, using the appropriate
quantities for the unplated region,

A calculation for the transverse modes propagating through the strips
can now be performed by trial and error yielding Vt- Vt(f) and satisfying
(4.6), (4.7) and (4.15) along with (3.6) and (4.10)1. Such calculations have
been performed for chorted aluminum strips on ST-cut quartz, and the dis-
persion curves for the first nine symmetric modes are plotted in Fig.6 for
G = 2100,

The boundary conditions at the edge of a strip in the propagation
direction are the continuity of ¢, i.e,

t =V, at x, = L, (4.18)
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In order that the edge conditions

(4.18) and (4.19) between a plated

we take the trans-

and unplated region of the array be satisfied pointwise,

verse wavenumber in the interior of an unplated region to be the same as the

transverse wavenumber % of that mode in the adjacent plated regions,

we have taken

accordance with the earlier discussion of the roots of (4.7),

[ % [lil[ ¢|i2|].

Then since the usual isotropic variable-cresting relations (3,6) are taken to

hold in the interior of an unplated region and the frequency is preserved, the

resultant wavenumber CU of the transverse mode in the interior of an unplated

region is given by
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Vv, (4.21)

v

where V and V are the straight-crested surface wave phase velocities at the
respective resultant wavenumbers E and (U in the plated and unplated interior
regions of the array and, as noted earlier, are plotted as the curves labeled
2 and 1, respectively, in Fig.3. The propagation wavenumber f: of the nth

transverse mode in the unplated region of the array is given by

U .2 .-
e’ - Ji%7 - R (4.22)

which enables the phase velocity V: of the nth transverse mode in the unplated

region to be obtained from
vO - Vusel (4.23)

The transverse decay number in the exterior of an unplated region of the array
is taken to be the same as the decay number x of that mode in the exterior of
the adjacent plated regions where in accordance with the earlier discussion

of the roots of (4.6), we have taken

M

nll + ?nzi] g (4.24)

. -
' 2
This approximation, which results in any one transverse mode propagating
through the reflecting array independent of all the other transverse modes,
certainly has no real influence on the accuracy of a calculation within the
framework of the procedure employed.
A plot of the fundamental transverse mode is shown as the dotted curve
in Fig.7, which shows that the inflection points are at the edges of the strips.

Since the transmitted power distribution depends on the square of the wave

function 7(0), the transmitted power distribution of the fundamental transverse
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mode takes the form shown as the solid curve in Fig.7, which indicates that
the inflection points of the transverse power distribution are well inside

the edges of the strips,

5. Reflection of a Rectangular Input

Since the width of the strips is very large compared to a wavelength or
the spacing of the strips, the amplitude of each transverse mode very nearly
vanishes at the edges of the strips, This fact is exhibited very clearly
for the fundamental symmetric mode by the dotted curve in Fig.7. As a conse-
quence of this, for simplicity, in the forced amplitude part of the analysis
we take the transverse modes to have nodes at the edges of the strips, This
approximation, which undoubtedly has a negligible influence on the accuracy
of a calculation, enables the ordinary orthogonality relations for trigono-
metric functions to be used in the determination of the forcing amplitude of
each transverse mode for an input of arbitrary shape in the transverse di-
rection, Accordingly, when a symmetric input wave with an x:-dependence of
the form f(xi) is introduced, the amplitude a of the xg—depondence of the

nth symmetric mode may be written in the form

-
K f " " .

a -~ J f(x‘)cos andx3 = RN RS ShE (5.1)

-

and if
- - |
{(x3) 1, w $ X, S w, f(xJ) =0, "3 > w, (5.2)
a =~ 4/nm, (3.3)
n

Thus, for a rectangular input the weighting of each propagating essentially
orthogonal symmetric transverse mode is given by (5.3), and the transmission

and reflection of each separate transverse mode may be treated exactly as




27,

in Ref.7, As in Ref.,7 and for the same reasons, we must normalize (here)
each of the transverse modes in the same way in the plated and unplated regions.
Accordingly, we introduce the normalization conditions, which are equivalent

to Egs, (3.9) and (3.10) of Ref,7 and take the form

al(O)al(O) +a2(0)02(0) 003(0)03(0) +a4(0)a4(0)- s (5.4)
in the unplated sections of the array and

01(0)01(0) 002(0)02(0) 053(0)53(0) +a4(0)54(0)- s (i (5.5)

in the strips, where

54(0)- (c../c..) %, (0) , a,(0) = (¢

22" %66 4 554(0). (5.6)

22”6’
Equations (5.4) and (5.5) are understood to represent n distinct normalization
conditions, respectively, one for each of the n transverse modes, As in Ref, 7,
we now introduce the numbering system shown in Fig.8. Since there are n-strips,
there are 2q +1 distinct regions, the first of which is denoted o and the last
of which, 2q. Note that the odd numbered regions are plated and the even,
unplated. In order to obtain the transmission matrix for each transvérse mode
we consider the transmission and reflection across one typical strip denoted m
with adjacent unplated regions (m-1) and (m41). The surface wave solution
functions of the approximate equations for the nth transverse mode for the

three consecutive sections of the reflector may be written in the form

- il -
n n(l) ign('3 zn’d) n(2) l’n‘xJ zn‘d)] -iwt
[} - C o +C o e '
m=1 m=1 m-1
4 - -iF -

- [—ﬂ(l) 50 *37%) a2y 15, (% 'n’] P

¥y =|C e +C e e -

m m m ;|
I Gt B R YEY "gn"s"-'d’] St g
m+l mel © mel © . 5.7}
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z = (m=1)(L+d)/2, (5.8)

and C:u) and C:(z) are the amplitudes of the positive and negative traveling

nth transverse mode in the rth section, In accordance with Sec.4 each of the
solution functions in (5.7) satisfies the appropriate equations in Sec,4 for the
strips and the regions between the strips in the respective sections of the
array provided the surface wave phase velocity dispersion curves -\;n-V(En)
and vg-vg(gn) are given by the appropriate curve in Fig.6 and Egs, (4.21) - (4.23),

respectively, The conditions to be satisfied at the junctions between the

plated and unplated regions, i.e,, at x, =z and x -zln*l, are (4.18) and

1 m 1
(4.19), which yield the four equations that enable us to express C:li;) in terms
of C:_(?) while eliminating the Z‘:‘(t), where r, s, t=1, 2, and thus obtain the

transmission matrix, Accordingly, substituting from (5,7) into (4.18) and

(4.19), respectively, at X, =e and x, = rm» L, we obtain
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(5.10)

where all the appropriate quantities on the right-hand side are understood

to be for the nth transverse mode and for convenience we have suppressed the

n and in reduces to Hn when h' = 0 and the dimensionless material constants

¢ _mc Jc & // ¢

= A'.'
pa pq 66 “ip” 6622 » S54" €34 €ays B’ mu'/c

66 °*

(5.11)

have been introduced., Solving the four linear algebraic equations in (5.9)

for Cn(r) in terms of cn(s)

i = ? we obtain

Cn(r) S T(rs)cn(l)

m+l m-1 '
s-1

(5.12)
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(rs) . i
which shows that Tn is hermitian, At this point it is both conventional

(rs)

and convenient to suppress the indices on the 2 * 2 matrix 'rn and 1 X 2
column vectors 'Cn(r) and (‘n(” and write
m+l m-1
n n
= . S.
Cm#l Tncm-l (5.14)

Since this analysis holds for each strip, application of (5.14) successively

across all the strips in the array from the first to the last yields

q times
c SPPPY s T ., (5.15)
29 RAnRDN n o
(2) n(l) (s} o
Since Czq vanishes and C’o =C L is known, where C is the amplitude

of the rectanqular input, (5.15) constitutes two linear inhomogeneous alge-

braic equations in C;;“ and CE(Z). which may readily be solved, More
(rs)

specifically, if we define sn by

s%% . wH"™ (5.16)
n n ’




the matrix equation (5,15) yields

2 22 )
Cn(2) --(S( 1)/5( ))Cn(l), Cn(l _(s(ll)_ s(12)3(21)/5(22)](:0a (5.17)
o n n o 29 n n n n n
: ) . n(2) n(l)
which gives the amplitudes Co and C2q of the nth transverse mode reflected

and transmitted, respectively, in terms of the amplitude of the incident trans-
versely uniform surface wave, Calculations may now readily be performed.

wWhen a calculation has been performed, the power reflection coefficient R

for the nth transverse mode defined by
2%« 10 dog (c“‘z)c“m./c"‘”c““") (5.18)
p 10 o o o o g
and the power transmission coefficient TP for the nth transverse mode
T = 10 unmr’z‘(;” ;;1)'/(_2(1)(_2(1)') : (5.19)
both in dB, may readily be evaluated, "learly, the calculated response is

the simple sum of all the reflection amplitudes resulting from the rectangular
input which is essentially what is measured in a typical surface wave reson-
ator experiment, The first nine symmetric modes have been included in all
calculations performed here, Calculations have been performed for a surface
wave reflector consisting of 200 aluminum strips, 10,000 A thick deposited on
ST-cut quartz subject to a rectangular input. The center frequency of the
fundamental mode is 74.7 MHz. The resultina power reflection coefficient is
plotted in Fig.9, The curve clearly reveals the existence of small resonance
peaks (or spurs) on the high frequency side of the fundamental resonance which
were observed by Staples and SIythelT. The calculated resonances normalized
with respect to the fundamental resonance are compared with the measured
results of Staples and Suyth017 in Table I, The calculated values are some-

what below the measured values, We believe the agreement would be improved

considerably i1f a more accurate digpersion curve for the aluminum film on the




guartz substrate were employed because the film thickness-to-wavelength ratios

used in the experiments were a little too large at the resonances for the thin
film approximation employed in the calculations, In Fig.l10 we have plotted

the amplitude and power reflection coefficients for the fundamental mode as

a function of the number of strips along with the same quantities obtained

from our earlxor~ straight-crested analysis, It is clear from the figure that

the earlier treatment overestimated the results, This is a result of the newly
defined straight-crested phase velocities in the plated and unplated regions

of the array. Figures 11-13, respectively, contain power transmission, power

reflaction coefficients and the phase of the reflected wave, all for the

fundamental transverse mode,
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5.

TABLE 1
Mod e F/F 2 Staples and Smythe
C

1 1 1

2 1,00013 1.00018

3 1,00032 1,0004

. 1,00065 1.0008

5 1.000935 1.0012

6 1.0015 1.0019

1,002 1,0028




Figure 1
Figure 2
Figure 3
Figure 4

Figure

Figure 6
Figure 7
Figure 8

Figqure 9

Figure 1C

Figure 11

Figure 12

Fiqure 13

FIGURE CAPTIONS

Lowest Straight-Crested Phase Velocity Dispersion Curve
for an Aluminum Film on ST-Cut Quart:r

Schematic Diagram of a Surface-Wave Reflector

Straight-Crested Phase Velocity Dispersion Curves in Both
the Plated with Adjacent Unplated and Unplated with Adjacent
Plated Regions for the case d= £, The dispersion curve

from FPig.l is plotted in this figure,

Diagram Showing a Partially Plated and Partially Unplated
Substrate Bounded by a rlindrical Surface

‘ross~-Section through a Typical Strip in the Array

Phase Velocity Dispersion Curves for G= 2100 for the First

Nine Symmetric Modes

Transverse Distribution of the Surface Wave Function and the
Power FPlux for the Pundamental Mode

Diagram Showing the Numbering Scheme for the Transmission
Matrices

Power Reflection Coefficient of a Surface-Wave Reflector
with 200 Aluminum Strips 10,000 A Thick on ST-Cut Quartz

at a Fundamental Frequency of 74,7 Miz for a Rectanqular

Input. Results are for d= £ and 2w =100 )

0
Amplitude (A;) and Power (B;) Reflection Coefficients of the
Pundamental Mode of the Surface-Wave Reflector with 10,000 A

Thick Aluminum Strips at a Center Frequency of 74,7 MHz, as
a Punction of the Number of Strips. The curves A and B are
btained using the straight-crested procedure presented in

=
Ref.7.

Power Transmission Coefficient of the Fundamental Mode of
the Surface-wave Reflector

Power Reflection Coefficient of the Fundamental Mode of the
Surface-Wave Reflector

Phase of the Pundamental Reflected Wave
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